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Abstract1

We study the problem of finding neck-like features on a surface. Applications for such cuts include2

robotics, mesh segmentation, and algorithmic applications. We provide a new definition for a3

surface bottleneck — informally, it is the shortest cycle relative to the size of the areas it separates.4

Inspired by the isoperimetric inequality, we formally define such optimal cuts, study their properties,5

and present several algorithms inspired by these ideas that work surprisingly well in practice. For6

examples of our algorithms, see  https://neckcut.space .7
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1 Introduction8

Computing “good” cycles on surfaces is a well-studied problem [ 15 ,  7 ,  4 ,  6 ,  11 ,  16 ,  5 ,  3 ],9

such as computing a class of cycles, such as shortest geodesic cycles, non-contractable loops,10

handles, etc. We are interested in cycles that represent neck-like features on a surface.11

Identifying neck-like features on a 3D surface mesh has been a crucial algorithmic problem12

in applications such as robotics, mesh segmentation, and more. Neck-like cycles are often13

employed in intermediate steps within these applications, but computing them can be both14

challenging and time-consuming, as seen in [ 32 ,  25 ]. Existing methods tend to rely on15

expensive preprocessing for topological methods, which may also involve mesh modification,16

to produce neck-like cycles.17

In this work, we consider two problems:18

▶ Problem 1. What is the optimal notion of a neck-like surface, and the cycles to define19

these necks?20

▶ Problem 2. How can neck-like cycles be efficiently computed?21

We propose a new geometrically motivated definition of a bottleneck curve (or neck-cut),22

based on the isoperimetric quantity. We describe a theoretical approximation algorithm to23

find near-optimal bottleneck curves, which runs in polynomial time. We then implemented24

a practical algorithm, with this motivating background, to run on real models, which runs25

in sub-quadratic time with good results. Our practical algorithm is simple to implement,26

relying only on shortest path algorithms and filtering to achieve the results shown, with no27

second-pass optimization or curve smoothing required.28

1.1 Background & Prior Work29

Necks versus non-contractable loops. Finding neck-like features differs from finding the30

shortest non-contractable loops on a surface. As a reminder, a non-contractable loop on a31

surface corresponds to a cycle on the surface that can not be morphed into a point. Naturally,32

a neck-like loop might lie on an object that is topologically a ball (as are most of the33

examples shown in figures throughout this paper) – for example, on an hourglass, all the34

loops are contractable, yet it has a neck-like feature. While in many high-genus objects, these35

non-contractable loops may act as neck-like curves, there may be other non-contractable36

loops that do not lie on a feature boundary, or contractable loops that are on neck-like37
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features, which would not be considered. Finding non-contractible cycles can be used to38

reduce the genus of a surface, by cutting along them as shown in [  15 ].39

Sparsest cut (a.k.a. Cheeger’s constant). A natural approach to addressing this problem40

is to consider the model as a graph G = (V,E) and compute the sparsest cut. That is, find a41

partition of the vertices of G into two sets S, S, such that the ratio42

ϕ(S, S) =
∣∣E(S, S)

∣∣
min(|S|, |S|)

43

is minimized. Sadly, the associated optimization problem is NP-Hard, and instead one44

can use algebraic techniques to approximate it. People use various heuristics inspired by45

this observation to find good cuts. For example, Gotsman [ 18 ] noted the connection of the46

Cheeger constant to the Laplacian of a surface mesh. Using this, he was able to detect47

whether a small cut exists and how to partition the graph based on spectral embedding for48

genus-0 models.49

However, the above definition of Cheeger’s constant does not constrain that the cut is50

connected. Additionally, transitioning to algebraic methods often results in fuzzy boundaries51

that require further refinement. Gotsman’s work approximates the optimal Laplacian basis,52

as computing the optimal would be on the order of O(|V |2) time.53

These techniques appear to yield relatively slow algorithms. Since they do not work54

directly with the geometry, the generated cuts, while of relatively good quality, are not quite55

locally optimal.56

Topological Methods. Abdelrahman and Tong [ 2 ] presented a method to compute neck-like57

features on meshes by locating critical points in a volumetric mesh and generating cutting58

planes over the mesh to isolate these loops. The primary observation was that essential59

points which were 2-saddles of a Morse function (generated by a distance function) would be60

good seed locations for neck-like features. This result was an extension of the method of61

Feng and Tong [ 16 ], which evaluated the persistent homology of the mesh to locate neck-like62

loops.63

The method in [ 2 ] achieves a speedup from [ 16 ] by producing an initial neck loop from64

the cutting plane, which would eventually be smoothed out via shortest loop evaluation. The65

loops they generate are of good quality on all genus meshes. The main pitfall, however, is66

that they require a tetrahedral mesh to perform their algorithm, resulting in a substantial67

increase in vertex and face density. Other topological approaches, such as the one in [ 13 ],68

often have the same requirement of a volumetric representation of the mesh.69

Surface Methods. Approaching this problem through topology is not the only route,70

however, as previous work has also considered the properties of the surface alone. Hétroy and71

Attali [ 23 ,  20 ,  21 ] compute geodesics on the surface, and slide to fit them to generate tight72

constrictions (neck-like features). Earlier works relied on mesh simplification to generate73

seed curves; however, in all cases, these algorithms rely on the local properties of geodesics74

to find neck loops.75

Specifically, Hétroy [ 23 ] approximates the mean curvature of the mesh in all locations76

to find seed locations for constrictions. Then, the algorithm performs a local search from77

these seed locations until the constrictions are minimized, and smooths and minimizes the78

curve. The authors in [ 31 ] designed a fast algorithm to find shortest, exact geodesics on a79

model, regardless of the quality of the input mesh. However, initial cutting loops must be80
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specified in the input, as this algorithm was not meant for discovering loops from just the81

input model.82

The authors in [ 30 ] use similar methods as our approach. However, when approximating83

constrictions, use the concavity of the curve. This algorithm requires computation of the84

Discrete Gaussian Curvature [ 26 ] of each point on a curve, requiring an O(n2) time algorithm85

to compute that metric.86

1.2 Our approach87

Our starting point is to define formally what constitutes a good neck cut. Intuitively, it is a88

curve that bounds a large area, while being short. In the plane, the largest area one can89

capture if the length of the perimeter is fixed is a disk. This innocent-looking observation is90

a consequence of the famous isoperimetric inequality. It states that for any region R in the91

plane, and any disk d of radius r, we have that92

m(R)
∥∂R∥2 ≤ m(d)

∥∂d∥2 = πr2

(2πr)2 = 1
4π ,93

where m(R) denotes the area of R, and ∥η∥ denotes the length of a curve η. We view the94

ratio on the left as the isoperimetric ratio of the boundary of R. A good neck-cut would95

have a high ratio. A curve on a surface might bound a much larger area compared to its96

perimeter, but unlike the plane, we have to consider both sides bounded by the curve. As97

such, the tightness of a closed curve on a surface (of genus zero) is the minimum, among the98

two regions it bounds, of the isoperimetric ratio.99

Computing tightness. Unfortunately, computing (or even approximating) the tightest cycle100

on a surface appears to be hopeless in terms of efficient algorithms. Nevertheless, it provides101

us with an easily computable scoring function to compare cycles (i.e., the tighter, the better).102

There are cases where the optimal neck-cut is intuitively obvious, see  Figure 2 . We thus103

investigate sufficient conditions under which we can efficiently approximate the optimal104

neck-cut. To this end, we first formally define tightness in  Section 2.1 .105

Specifically, for a loop, we look at the ratio between the area it encloses and its length106

squared (for a circle in the plane, this ratio is a constant). Clearly, the bigger the ratio, the107

better neck-like the cycle is. We formally define the underlying optimization problem in108

 Section 2.1 .109

Well-behaved surfaces, salient points, and discovering necks. We quantify, in  Section 2.2 ,110

what it means for a surface to be well-behaved – intuitively, it should have bounded growth111

(which all real-world surfaces seem to possess). To discover the neck-cuts, we try to identify112

necks – to this end, we study in  Section 2.3 salient points that can be used to define necks.113

Intuitively, salient points are extremal points of the model (such as the tips of fingers in a114

human model). The paths connecting distant salient points (such as the path between the115

tip of a finger and the tip of a toe of a human model) can then be used to identify (implicitly)116

necks that should contain good cuts.117

Approximation algorithms In  Section 3 , we present an efficient approximation algorithm118

to the optimal collar (i.e., best neck-cut) under certain (pretty strong) conditions. This119

approximation algorithm gives us reasonable bounds for the total time complexity required,120

while also motivating the core heuristics used in the practical algorithm.121
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In  Section 4 , we discuss a surface-based practical algorithm. Our algorithm uses the salient122

points as a baseline on which a neck-like cycle must lie on the path between salient points.123

Because of this, we can mainly rely on shortest path algorithms with little preprocessing and124

focus on filtering cycles of interest.125

Our practical algorithm is based on a few heuristics derived from the properties of126

bottleneck curves, and thus can produce good bottleneck curves in surface meshes. We127

discuss the performance of our algorithm and the viability of generating these curves in a128

real-time setting. Unlike previous work, our algorithm avoids complex global computation or129

iterative smoothing.130

Numerous examples of the output of our algorithm are provided at  https://neckcut.131

space and discussed in  Section 5 .132

2 Isoperimetry, bottleneck cuts, and salient points133

2.1 Isoperimetry and bottlenecks134

Isoperimetric problem on surfaces. The isoperimetric problem asks to determine a plane135

figure of maximum area, with a specified boundary length. This problem dates back to136

antiquity, but a formal solution was not provided until the 19th century. It is known [ 8 ] that137

circles, and in higher dimensions balls, are the optimal shapes. Even in the plane, proving it138

was quite a challenge. For a planar closed curve σ, consider its isoperimetric ratio:139

ρ(σ) = m(int(σ))
∥σ∥2 ,140

where int(σ) is in the interior region bounded by σ, and ∥σ∥ is the length of σ. This ratio can141

be arbitrarily small (i.e., consider a wiggly shape that has a small area but a long boundary).142

The isoperimetric inequality states that this ratio is maximized for the disk, where it holds143

with equality. Namely, the isoperimetric inequality states that, for any closed planar curve σ,144

we have ρ(σ) ≤ 1
4π .145

On a finite surface (say of genus zero) in 3D, it is natural to try to compute a closed146

curve on the surface as short as possible that splits the surface area into two “large” parts.147

As a concrete example, consider the natural cycle in the base of a human finger – it does not148

partition the surface (i.e., a human model) even remotely equally. And yet, it is intuitively a149

good neck-cut.150

Tightness. To overcome this for a surface M (say of genus 0), we define a variant of the151

isoperimetric ratio.152

▶ Definition 3. For a surface M in R3 of genus zero, and a region b ⊆ M, let the tightness153

of b is the ratio154

⟨b⟩ =
min

(
m(b),m(b)

)
∥∂b∥2 ,155

where ∂b is the boundary of b, m(b) is the area of b, the complement of b is b = M \ b,156

and ∥∂b∥ denotes the length of ∂b. In particular, for a close curve η, that splits the surface157

into two parts b and b, its tightness ⟨η⟩ is the tightness of ψ(b).158

Here, the closed curve is ∂b, the patches generated by ∂b are b and b, and its tightness159

is “roughly” the isoperimetric ratio. It is thus natural to ask for the patch b ⊆ M with160

maximum tightness.161

https://neckcut.space
https://neckcut.space
https://neckcut.space
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▶ Example 4. Consider the M to be a unit radius sphere in 3D. It is not
hard to see that the maximum tightness is realizable by b being the (say, top)
hemisphere of M, and ∂b being the equator. In that case, m(b) = 2π, and
ψ(b) = 2π/(2π)2 = 1

2π . Intuitively, closed curves are “interesting” as far as
being a neck-cut if their tightness is at least 1

2π . (Compare this to the disk in
the plane, that has tightness 1

4π .)

162

In general, proving that a specific patch b ⊆ M is the one realizing maximum tightness is163

a challenging problem, as the long history of the isoperimetric inequality testifies [ 27 ,  10 ,  22 ].164

A bottleneck curve on a surface should have the property that it is short, while enclosing a165

large area on both sides (e.g., a neck of an hourglass). Thus, our proxy for finding a good166

bottleneck curve is going to be computing curves on a given surface that have high tightness.167

▶ Problem 5. Given a surface M, compute a region b with tightness ψ(b) as large as possible.168

M
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b2 x

M

b

ξ
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q
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ξ

p

q
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b2
σ

Figure 1 Middle, Right: For some optimal bottleneck ξ, we consider the geodesic σ. Left: If the
geodesic were to cross ξ at x, it would be a contradiction, as shortcutting along ξ would be shorter.

169

170

▶ Definition 6. Let M be a surface of genus zero, and let ξ be a cycle on M. Let b be the171

region bounded by ξ on M. The cycle ξ is a α-bottleneck of M, if the tightness of b is at172

least α. The α-bottleneck with maximum α on M, is the optimal bottleneck cut, or simply a173

collar.174

2.2 Well behaved surfaces175

To explain some intuition for the heuristics used in  Section 4 , we discuss a few properties of176

a well-behaved surface.177

Slow-expansion on the surface. We are interested in surfaces such that their measure (i.e.,178

area/volume) does not expand too quickly.179

To this end, given a set σ on a M, its r-expansion is the region180

σ ⊕ r = {p ∈ M | dM(p, σ) ≤ r} . (1)181

▶ Definition 7. A model M is τ-expanding, if for any curve σ ⊆ M, and any r ≥ 0, we182

have that m(σ ⊕ r) ≤ τ(∥σ∥ r + r2) and ∥∂(σ ⊕ r)∥ ≤ τ(∥σ∥ + r). The minimum such τ is183

the expansion of M, denoted by τ⋆.184

▶ Example 8. In the plane, Steiner inequality [ 19 ] implies that for any curve σ we have185

m(σ ⊕ r) ≤ πr2 + 2r ∥σ∥ and ∥∂(σ ⊕ r)∥ ≤ 2 ∥σ∥ + 2πr. Thus, the plane is 2π-expanding.186
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▶ Definition 9. A simple cycle σ is contractible if one can continuously morph σ to a187

single point. A portion R ⊆ M, and a cycle σ ⊂ R, the cycle is R-contractible, if it can188

be contracted to a point, while staying inside R.189

Note that while any cycle σ on the original surface M is contractible, if M has genus zero,190

it might not be R-contractible – for example, if R is the result of taking M and creating191

two punctures on both sides of σ. Intuitively, tight cycles are not locally contractible – one192

has to go far to be able to collapse them to a point.193

▶ Definition 10. For R ⊆ M, and an R-contractible cycle σ ⊆ R, let bσ ⊆ R be the portion194

of M bounded by a closed curve σ (the other portion of M bounded by σ might contain195

portions outside R). If R = M, let bσ denote the smaller area patch (out of the two patches)196

induced by σ on M. The region R is α-well-behaved if for all R-contractible cycles σ ⊂ R,197

we have that m(bσ) ≤ α ∥σ∥2.198

▶ Remark 11. Consider a region R ⊆ M, where M is τ -expanding, such that any R-199

contractible cycle σ in it, is
(
(σ ⊕ r) ∩ R

)
-contractible, where r = τ ∥σ∥. Then, the200

τ -expansion implies that m(bσ) ≤ m(σ ⊕ r) ≤ τ(∥σ∥ r + r2) ≤ 2τ3 ∥σ∥2). Namely, R is201

2τ3-well behaved.202

2.3 Salient points to a bottleneck203

In the following, we assume the given surface M is triangulated, has genus 0, and it has a204

useful collar (i.e., α-tight for a “large” α). In addition, we assume M is τ -expanding, where205

τ is some small constant. Let o denote this optimal α-bottleneck of M. The cycle o breaks206

M into two regions b and b. Let s(o, b) be the point furthest away from o on b. Formally,207

we define208

s(o, b) = arg max
p∈b

dM(p,o) where dM(p,o) = min
q∈o

dM(p, q).209

Such points are salient, and they are far from the bottleneck if the surface is well behaved.210

▶ Lemma 12 (salient points are far). For s = s(o, b), we have that dM(s,o) ≥ ∥o∥, if211

α ≥ 4τ .212

Proof. Let ℓ = ∥o∥. By o being an α-bottleneck, we have that213

m(b) ≥ α ∥o∥2
.214

On the other hand, for r = dM(s,o), we have b ⊆ o⊕ r. By the τ -expansion of M, we have215

m(b) ≤ m(o ⊕ r) ≤ τ(∥o∥ r + r2).216

Thus, we have α ∥o∥2 ≤ τ(∥o∥ r + r2) ≤ τ(∥o∥ /2 + r)2. This implies that217

α

τ
∥o∥2 ≤ (∥o∥ /2 + r)2 =⇒ r ≥

(√
α

τ
− 1

2

)
∥o∥218

as α/τ ≥ 4. ◀219
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Figure 2 Left: A long neck with a stable collar. Right: Every geodesic cycle from the beak to
the left foot.

225

226

3 Approximating the optimal collar220

3.1 Identifying the neck where the collar lies221

Consider the easy case, that not only is there a good collar, but this collar is stable, in the222

sense that one can slide it up and down the “neck” and the quality of the collar remains223

relatively the same, see  Figure 2 .224

▶ Definition 13. Let κ be a “long” shortest path on M with endpoints s and t. For every227

point p ∈ κ, consider the shortest path ⟳κ(p) from p to itself, if we were to cut the surface228

M along κ, and the path σ has to connect p to its copy. The closed curve ⟳κ(p) is a lasso if229

∥⟳κ(p)∥ > max
(
dM(p, s), dM(p, t)

)
,230

and is denoted by ⟳κ(p).231

▶ Example 14. Let M be the surface of the following solid – connect two large disjoint balls232

by a thin and long cylinder (i.e., a dumbbell) – see  Figure 3 . Consider the cylinder portion233

of the surface – it forms a natural neck, and let R denote it. Any curve going around the234

neck is not contractible on the neck, while any closed curve σ that is contractible on the235

neck, is going to have area O(∥σ∥2). That is, the neck is O(1)-well behaved.236

▶ Observation 15. Two lassos defined using the same base path π can not cross each other.237

▶ Definition 16. Consider two lassos τ1, τ2 defined using a base path (which is a shortest238

path) π. The neck N = N (τ1, τ2) is the area on the surface M lying between τ1 and τ2.239

Such a region is β-neck if it is β-well-behaved, for some β > 0.240
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Figure 3

τ1

τ2

κ

ς
ϑ⋆

p

bM

Figure 4

▶ Lemma 17. Let s, t be two points on M, and let κ be the shortest path connecting them.241

Let τ1, τ2 be two lassos defined by points on κ, and let N = N (τ1, τ2) be the induced α-neck.242

Assume that the optimal collar ϑ⋆ is contained in N , and its tightness β ≥ 8α. Then, there243

exists a point p ∈ κ ∩ N , such that its lasso ς = ⟳κ(p) is β(1 − 4α
β )-tight.244

Proof. The algorithm picks a point p ∈ κ ∩ ϑ⋆ as the base point for the construction. Let245

ς = ⟳κ(p) be the associated lasso.246

Assume, for now, that the lasso ς only intersects ϑ⋆ at p (as in  Figure 4 ). In that case, ς247

and ϑ⋆ are homotopic, and let bi be the area in between them. By the α-behaveness of N ,248

and since ∂bi is ϑ⋆ ∪ ς (and is N -contractible), we have that249

m(bi) ≤ α(∥ϑ⋆∥ + ∥ς∥)2 ≤ 4α ∥ϑ⋆∥2
,250

as ∥ς∥ ≤ ∥ϑ⋆∥ – indeed, ϑ⋆ is a candidate for the shortest path connecting p to itself “around”251

κ, but ς is the shortest one.252

For a closed curve η, let bη and bη be the two parts of M bounded by η. Observe that253

B = min
(
m(bς),m(bς)

)
≥ min

(
m(bϑ⋆),m(bϑ⋆)

)
− m(bi).254

The tightness of ς is thus ⟨ς⟩ = B

∥ς∥2 ≥
min

(
m(b),m(b)

)
− m(bi)

∥ϑ⋆∥2 ≥ ⟨ϑ⋆⟩ − 4α.255

The slightly harder case is when ς and ϑ⋆ have several intersections. In that case, the256

ς ∪ ϑ⋆ forms an arrangement – the “inner” region/face denoted by bs and the outer face257

denoted by bt. So consider all the other faces f1, . . . , fk in this arrangement. These faces are258

all contractible disks. Let ℓi be the boundary of the ith face, for i = 1, . . . , k. Observe that259

every edge e of ς or ϑ⋆ contributes at most 2 ∥e∥ to the total lengths of these boundary faces.260

Thus, we have
∑k

i=1 ℓi ≤ 2(∥ς∥ + ∥ϑ⋆∥) ≤ 2 ∥ϑ⋆∥ . Setting bi = (bϑ⋆ \ bς) ∪ (bς \ bϑ⋆) to be261
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τ1 κ

ς

p

ϑ⋆

τ2

Figure 5

region that is the symmetric difference between bϑ⋆ and bς , we have262

m(bi) ≤
k∑

t=1
m(ft) ≤

k∑
t=1

αℓ2
t = α

k∑
t=1

ℓ2
t ≤ α

( k∑
t=1

ℓt

)2
4α ∥ϑ⋆∥2

.263

The claim now follows from the argument above, and observing that ⟨ς⟩ ≥ ⟨ϑ⋆⟩ − 4α =264

β
(
1 − 4α

β

)
. ◀265

▶ Corollary 18. In the settings of  Lemma 17 , if the tightness β of the optimal collar on an266

α-neck N is ≥ 4α/ε, for ε ∈ (0, 1), then there is lasso on N of tightness ≥ (1 − ε)β. Namely,267

the lasso has tightness ε-close to optimal.268

3.2 The algorithm for computing the collar269

 Lemma 17 implies that if the optimal tightness is much bigger than the α (the well-behavedness270

of the neck), then one can efficiently compute a collar with tightness close to optimal.271

Importantly, such a lasso is efficiently computable.272

We outline here the basic idea – our purpose is to present a polynomial-time approximation273

algorithm. To this end, we guess the points s and t of  Lemma 17 , and compute the shortest274

path κ between them. Next, we guess the two points, x, x′ ∈ κ, defining the lassos bounding275

the optimal collar ϑ⋆, and we compute these two lassos. We compute the region N bounded276

in between τ1 and τ2, and verify that it indeed has the topology of a sleeve (this can be277

done by example by computing its Euler characteristic, and verifying that τ1 and τ2 cover all278

the boundary edges of this patch. Now, one can try to compute the shortest path around279

the neck for each vertex v ∈ κ ∩ N , and explicitly determine its tightness. The maximum280

one found is the desired approximation. If the model has size n, the running time of this281

algorithm is O(n5). We thus get the following.282

▶ Theorem 19. Let M be a triangulated surface in 3D with genus 0 and n vertices. Assume283

the optimal collar ϑ⋆ on M lies on an α-neck N that is induced by a shortest path κ, and two284

lassos τ1, τ2 (see  Lemma 17 ). Furthermore, the tightness ⟨ϑ⋆⟩ ≥ 8α. Then, one can compute,285

in O(n5) time, a closed curve ς such that ⟨ς⟩ ≥ ⟨ϑ⋆⟩ − 4α ≥ ⟨ϑ⋆⟩/2.286

▶ Remark 20. The above algorithm inspires our practical algorithm, which achieves sub-287

quadratic running time by avoiding the need to guess all pertinent information. Thus, we288

had not spent energy on improving the running time of  Theorem 19 . In particular, the289

stated running time should be taken as evidence that the optimal collar can be approximated290

efficiently under certain conditions.291
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4 A Practical Algorithm292

We will discuss an implementation that utilizes a few heuristics to locate optimal bottleneck293

curves while maintaining fast performance. This algorithm is an approximation and may not294

find all optimal curves. However, as we have implemented it, it is the fastest solution, and295

optimizations are possible to produce high-quality results in real-time. We assume and run296

on models of genus 0.297

The process can be described in two stages for any given mesh: In the first stage, we298

locate salient points that lie on the tips of features. In the second stage, we take paths299

between salient points and search for bottleneck curves. Here, we discuss the details of each300

process and what steps we take to return relevant curves. In  Section 5 , we discuss how this301

algorithm performs on various meshes in the wild.302

4.1 Finding Salient Points303

We aim to identify distant pairs of salient points to search for bottleneck curves. Usually,304

these points represent the tips of various features on a mesh (such as the tip of a spike,305

finger, or head) but do not necessarily lie on the convex hull of the mesh. Finding exact306

salient points can be difficult and time-consuming. We will use a standard method to locate307

points that are near “true” salient points, but are sensitive to the starting location of our308

search. Previous work has focused on identifying salient points and utilizing them in mesh309

decomposition [ 33 ]. Other methods have also utilized feature points and surface methods310

to perform mesh decomposition [  14 ,  17 ,  24 ,  12 ]. We use shortest path algorithms to locate311

these salient points, which act as reasonable estimates for the exact salient points that would312

be used to find bottleneck cuts.313

Let Ts be the shortest-path tree rooted at s, let d(v) be the distance from s to v. We first314

compute a point on the mesh that lies on a 2-approximation of the diameter of the mesh:315

1. Pick an arbitrary point on the graph s.316

2. Compute the shortest-path tree Ts. Let u be the leaf with the distance from s.317

3. Compute shortest-path tree Tu. Let v be the leaf with maximum distance from u.318

We consider the shortest path tree Tu. A vertex x is a salient point if it is a local319

maximum of its neighbors with respect to distance to u. That is, for every neighbor y,320

dM(u, y) < dM(u, x). Because v is the furthest point from u, all its neighbors must have a321

shorter distance, and thus it is a salient point. For every leaf on Tu, we check all its neighbors322

on the mesh and mark it as a salient point if the above condition holds. Let C denote the323

set of salient points.324

Depending on the quality of the mesh, some filtration of salient points may be necessary.325

Extremely noisy surfaces can create several local maximum points close together. In these326

cases, we want to eliminate any salient point within a user-selected distance r from any327

salient point. We sort C and perform an r-depth breadth-first search from each salient point,328

removing any salient points from C that we encounter. In practice, r is no larger than a329

small constant to handle small perturbations in a mesh. See  Figure 6 for an example.330

4.2 Finding Bottleneck Curves333

Once we have found a set of salient points C, we can begin the process of locating bottleneck334

curves. We will build a simple skeleton of the mesh. We start with u and v from the previous335
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Figure 6 The salient points of a human mesh, with no filtering (left), r = 10 (middle), and r = 20
(right). The bottleneck curves are shown in the right mesh.

331

332

section and the path between them. For each candidate x, we find a path between x and the336

path between u and v. We add this path to our skeleton. Each remaining candidate will find337

the shortest path between it and the constructed skeleton, and we repeat this process until338

all candidates are connected. Let this skeleton be K.339

For each path π ∈ K, we can find a cycle on this skeleton by running a shortest-path340

algorithm from some vertex v ∈ π to itself, where no vertices on π can be used, thus341

preventing the shortest-path algorithm from crossing π. This cycle is a geodesic (with respect342

to π) cycle which includes v. This process generates an ordered sequence of cycles Π. We343

want to select cycles with a local maximum tightness. To compute the tightness requires344

computing the area bounded by each cycle ξ ∈ Π, and selecting local maxima within Π.345

On genus zero objects, we can compute the area between every adjacent pair of cycles (e.g.346

ξi, ξi+1 ∈ Π for each i), and then use prefix sums to compute the area bounded by one cycle347

efficiently. For a cycle ξ, if its tightness is the local maximum among its neighbors, then it is348

likely a good bottleneck.349

Cycles near boundaries and salient points might be of low quality. Likewise, cycles that350

bound a small amount of area, whilst also being short, can lead to other cycles which appear351

to be local maxima among their neighbors. To that end, we refer to the calculation in352

 Example 4 , and filter out any cycle with a computed tightness less than 1
2π (with some353

tolerance due to inaccuracies with triangulated meshes). These cycles aren’t representative354

of a large enough bounded area, and thus do not make good bottleneck curves.355

4.3 Timing Analysis356

Computing the set of candidates takes O(n logn) time, for running shortest paths, and the357

r-depth filtering, which is no worse than O(n) time. Let k = |C| and |K| be the number of358

vertices in the skeleton. Computing the skeleton itself takes O(cn logn) time. The bulk of359

our time results from computing the cycles along the paths, which takes O(|K|n logn) time.360

In practice, this is much faster, since we are running an st-shortest path algorithm, which361
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terminates early.362

There are additional optimizations in practice that can be employed that would further363

speed up the cycle searching. Mainly, computing the cycles along each path is not reliant364

on data from the other paths in K. Namely, with parallelism, each path can be computed365

independently, thus bounding the runtime based on the number of available cores and the366

longest path within the skeleton.367

5 Evaluation368

We implemented our algorithm in C++, using the Polyscope & Geometry Central [ 29 ,  28 ]369

libraries. These libraries provide a halfedge data structure, with standard traversal algorithms.370

All timings were measured on a single thread of an Intel i7-14700K 3.4GHz CPU. We tested our371

algorithm on Benchmark for 3D Mesh Segmentation Dataset [ 9 ], along with additional meshes.372

All of our results from this dataset, along with the code, can be viewed on  meshcuts.space .373

We have selected a few to feature in this paper, as shown in  Table 1 . We measured the374

runtime of all genus zero models, as shown in  Figure 7 . We attempted to use the code375

from [  2 ] for comparison. However, we were unable to reproduce a working program, despite376

repeated efforts.377

378 Input Description Faces
379 7 Public Domain: Human 1 48918
380 2 MSB/Stanford: Armadillo 50542
381 3 MSB: Octopus 28248
382 4 MSB: Ant 13696
383 5 MSB: Horse 11072
384 6 MSB: Hand 3026
385 1 MSB: Human 2 11258
386 8 Stanford: Bunny 69630

Table 1 Selected inputs from our testing. MSB models are from [ 9 ], Stanford models are from [ 1 ]387

This implementation still has some optimizations to be implemented, as described in388

 Section 4.3 . The timings described in  Table 2 are single-threaded operations. We lazily389

compute the bounded area in this implementation, only running the prefix-sum method per390

path, rather than the entire skeleton at once. However, further optimizations would not have391

a significant impact on the runtime. The results from these models can be seen in  Figure 8 ,392

 Figure 9 , and  Figure 10 .393

When deciding which cycles to display, we chose cycles whose tightness is a local maximum394

among a window of five cycles. From the discussion in  Section 3 , a neck is defined by two395

collars, with some optimal collar lying within the neck. In practice, we observe that several396

cycles all reach a maximum tightness as a group, since these neck-like surfaces are usually397

well-behaved. In dense meshes, such a small exclusion window would result in several cycles398

with similar tightness reported together. Alternate implementations can choose to report all399

or some of these cycles, but in either case, the same neck-like feature is identified.400

6 Conclusions412

We proposed a new definition for neck-like features and the curves that defined them. We413

also presented an approximation and practical algorithm to detect these bottleneck curves on414

https://neckcut.space/dist/
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Figure 7 Runtime of models from [ 9 ]. Runtime is plotted with blue dots. The number of
candidates is plotted with orange crosses.

401

402

real-world meshes. We believe our method has improvements over previous work [ 30 ,  23 ,  2 ],415

while also being extremely simple to implement. For future work, we wish to explore using416

this algorithm in other applications. One possible application is to use this algorithm as the417

seeds for [ 31 ], rather than user-defined cutting planes, to discover exact geodesics from our418

output cycles.419
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406 Runtime in ms
Input # Salient Pts. Salient Pts. Cycles Tightness Total
1 21 182 4252 398 4833
2 22 185 5428 413 6026
3 12 89 1352 129 1570
4 11 43 578 57 678
5 9 35 516 37 588
6 6 11 98 6 115
7 7 42 496 28 567
8 9 226 8151 230 8607

Table 2 Runtimes of our selected inputs. Our runtime is sensitive to the number of discovered
points, which is also disclosed. r = 20 for salient point filtering. Salient Pts. is the time to discover
the set of salient points and connect them into a skeleton. Cycles is the time for discovering every
cycle along the skeleton. Tightness: the time for area computation, tightness computation, and
cycle filtering.
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